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Abstract

The tearing mode instability is a key process for magnetic energy conversion in
magnetohydrodynamics, once anti-parallel components are allowed to reconnect,
leading to the formation of magnetic islands. It has been employed to explain
phenomena at different scales in nature, from galactic nuclei, to solar flares and
laboratory fusion devices. In this study, we investigate the dynamics of a current
sheet in the presence of a transverse magnetic field component, in the framework
of viscoresistive, incompressible magnetohydrodynamics (MHD), both analyti-
cally and by means of direct numerical simulations. Firstly, we obtain analytical
solution for the time-varying one-dimensional profile of an initial Harris current
sheet in the presence of a transverse field. We find that the introduction of a
transverse magnetic field disrupts the system’s equilibrium, leading to the natural
development of a neutral layer with shear flows within the current sheet, one along
the antiparallel magnetic component and another along the guide field direction.
Secondly, through numerical analysis, we examine the dispersion relation of the
incompressible MHD equations in the context of a modified equilibrium profile
due to the transverse field. Our findings indicate a rapid suppression of unsta-
ble modes of tearing instability with the width of the neutral layer, confirming
the analytical predictions. These results offer new insightful understanding on
the interplay between transverse magnetic fields, shear flows, and tearing mode
instabilities in current sheet environments.

Keywords: magnetohydrodynamics, plasma instabilities, tearing mode, magnetic
reconnection, numerical methods
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Tearing instability is a fundamental process in magnetohydrodynamics (MHD) that
plays a critical role in the dynamics of astrophysical plasmas. First analyzed in detail
by Furth, Killeen, and Rosenbluth (1963) [1], the tearing is a type of resistive instability
that disrupts current sheets in plasmas, leading to faster magnetic reconnection as
compared to standard Sweet-Parker model [2, 3], a process essential for converting
magnetic energy into kinetic and thermal energy, as well as accelerating particles,
which is significant in various astrophysical environments.

In astrophysical contexts, magnetic reconnection is crucial for understanding phe-
nomena such as solar flares, magnetic storms, and the heating of the solar corona [4].
These events are driven by the release of stored magnetic energy through reconnection,
which is supposedly facilitated by the tearing instability. This instability enables the
breaking and reconnection of magnetic field lines, leading to a rapid reconfiguration
of the magnetic field topology and the associated energy release [5].

Recent research on the interplay between turbulence and tearing mode instabil-
ity suggests a crucial role of the instability in shaping the energy dissipation and
magnetic field structure in magnetohydrodynamic (MHD) turbulence [6–8]. Current
sheets formed within turbulent eddies can become unstable to tearing modes when
their thickness lies below a critical scale, leading to the formation of plasmoids and
altering the energy cascade. This tearing-mediated regime introduces a sub-inertial
interval characterized by a distinct scaling of the energy spectrum, different from the
standard Kolmogorov-like turbulence. For instance, the scale of eddies where recon-
nection becomes significant is larger than the resistive diffusion scale, resulting in a

k
−5/2
⊥ spectrum in the reconnection interval. The instability also affects the alignment

of magnetic field lines, reducing anisotropy at smaller scales and modifying the tur-

bulence spectrum to k
−11/5
⊥ . Furthermore, in the context of the turbulent dynamo,

tearing instability disrupts folded magnetic structures at high magnetic Reynolds num-
bers, enhancing viscous-to-resistive dissipation and steepening the magnetic energy
spectrum [9]. These findings highlight that tearing instability not only competes with
but also significantly influences the nonlinear evolution of turbulent eddies, leading
to a complex and dynamic interplay that is essential for understanding energy dis-
sipation and magnetic field topology in various astrophysical and laboratory plasma
environments.

Plasmoid instability, which has become synonymous of tearing mode instability in
a three-dimensional scenario, is a significant mechanism in magnetic reconnection pro-
cesses. This instability manifests when thin current sheets, formed during magnetic
reconnection events, become susceptible to high-wavenumber perturbations, leading to
the rapid formation of fluxtubes trapped between reconnecting active regions, known
as plasmoids or secondary islands. Theoretical models and numerical simulations [10–
13], have shown that the growth rate of plasmoid instability scales with the Lundquist
number, S = LvA/η, following the relation γ ∼ S1/4. This rapid instability causes
the current sheets to break into a chain of plasmoids, accelerating the reconnection
process beyond the rates predicted by the classical Sweet-Parker model. In high-
Lundquist-number plasmas, plasmoid instability induces a regime of fast reconnection
characterized by dynamic and impulsive behaviors, leading to significantly higher
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reconnection rates than previously understood. The ejection of the plasmoids, how-
ever, is necessary for an efficient magnetic energy conversion - and particle acceleration
-, which are crucial in explaining the rapid energetic events observed in astrophysical
and laboratory plasmas.

Viscosity plays a significant role in modulating the tearing mode instability, partic-
ularly in high-Lundquist-number plasmas [14–17]. The introduction of viscosity alters
the scaling of the growth rate and the behavior of the unstable modes. For instance,
when viscosity is considered alongside small shear flow, the scaling of tearing growth
rate changes to S−2/3(Sv/S)

1/6, where Sv is the ratio of the viscous time to the
Alfvén time. This adjustment in scaling indicates that viscosity can strongly reduce
the instability growth rate compared to the inviscid case. Additionally, at large mag-
netic Prandtl numbers (Pm = ν/η ≫ 1), the growth rate and wavenumber of the most

unstable mode scale differently, leading to predictions such as γmax ∼ S1/4P
−5/8
m and

kmaxLCS ∼ S3/8P
−3/16
m . This implies that higher viscosity allows for larger aspect

ratios of current sheets before they become unstable. In the context of Sweet-Parker
current sheets, the presence of viscosity also affects the onset and growth rate of the
plasmoid instability and, in some cases, it enables the Kelvin-Helmholtz instability
to grow faster than the plasmoid instability. Overall, viscosity introduces additional
complexity to the tearing mode dynamics influencing the stability and structure of
current sheets in both laboratory and astrophysical plasmas.

The effects of compressibility and velocity shear significantly influence the tearing
mode instability in various ways. Compressibility enhances the development of tear-
ing instabilities, particularly in regions where incompressible plasma would otherwise
remain stable [18]. This destabilizing effect is triggered by the longitudinal magnetic
field, playing a crucial role in dynamic solar phenomena such as flares. On the other
hand, velocity shear, particularly in the presence of equilibrium shear flow and viscos-
ity, introduces complex modifications to the tearing mode growth rate [14, 15, 19, 20].
Shear flow alters the eigenfunction profiles, creating new peaks outside those found in
flow-free scenarios, and modifies growth rate scalings to S−2/3(Sv/S)

1/6. High shear
flow can induce Kelvin-Helmholtz instabilities, further complicating the dynamics.
Additionally, shear flow can stabilize the current sheet by stretching and evacuating
magnetic islands, limiting the duration of instability growth and leading to non-
exponential behavior. The interplay between these factors—compressibility and shear
flow—demands detailed numerical and analytical studies to fully understand their
combined impact on magnetic reconnection processes in astrophysical and laboratory
plasmas.

In a three-dimensional (3D) tearing scenario, one expects a complex interplay
between multiple resonant surfaces and the influence of a guide field on the instability
dynamics [12, 21]. Unlike the two-dimensional (2D) case, where instability occurs
primarily at the null surface, 3D geometries with a guide field exhibit a spectrum
of unstable modes across various resonant surfaces within the current sheet. These
surfaces are characterized by unique angles of obliquity, with the most unstable modes
being oblique rather than parallel. The presence of a guide field introduces a dispersive
nature to the propagation of these modes, altering their growth rates and structures.
For instance, the most unstable wavenumber is found at the intersection of constant-ψ
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and non-constant-ψ regimes (where ψ is the magnetic flux function), with the growth

rate scaling as γmax ∼ S
1/4
L (1 − µ4)1/2. In the presence of the Hall effect [21, 22], a

strong guide field does not change the dominance of the fastest-growing parallel mode
but suppresses the wavelike structure of oblique modes, making the eigenfunctions
asymmetric. These findings underscore the significance of including guide fields in
tearing mode analyses, as they fundamentally alter the instability characteristics and
contribute to the formation and dynamics of plasmoids in 3D MHD systems.

As discussed above, the tearing instability may be suppressed, or have its scaling
laws severely modified, under some circumstances, either by viscous effects or the
presence of velocity shears. Another stabilizing factor for tearing is the presence of
a transverse, i.e. normal to the current sheet plane, magnetic field component. The
stabilization effect of the transverse field Bn becomes essential for ξ ≡ Bn/B0 ≥ S−3/4

[23], decreasing the growth rate γ with increasing the value of ξ. Once ξ ≫ S−3/4,
the instability is completely stabilized. This conclusion was, however, drew based on
the stability of linearized incompressible MHD equations under the assumption of the
same equilibrium as in the original work by Furth, Killeen, and Rosenbluth (1963).

In this work we demonstrate that the presence of transverse field modifies the initial
magnetic shear profile. We provide the analytical solution of an initial Harris current
sheet profile in the presence of transverse field, and perform the stability analysis of
the incompressible MHD equations for the modified profile.

Harris Current Sheet in the Presence of a
Transverse Field

First, we analyze the effect of a transverse magnetic field on the evolution of the initial
configuration of a one-dimensional (1D) Harris current sheet with thickness a. The
initial magnetic field configuration is given by Bx(t = 0, z) = B0 tanh

(
z
a

)
for the field

parallel to the current sheet, and By(t = 0, z) = B0sech
(
z
a

)
for the guide field, with

no initial flow (Ux(t = 0, z) = Uy(t = 0, z) = 0), and a non-zero, uniform transverse
field (Bz = const). The evolution of the system along the z-direction is governed by
the incompressible magnetohydrodynamic (MHD) equations:

∂Ux

∂t
= Bz

∂Bx

∂z
+ ν

d2Ux

dz2
(1)

∂Uy

∂t
= Bz

∂By

∂z
+ ν

∂2Uy

∂z2
(2)

∂Uz

∂t
= − ∂

∂z

[
p+

1

2

(
B2

x +B2
y

)]
(3)

∂Bx

∂t
= Bz

∂Ux

∂z
+ η

∂2Bx

∂z2
(4)

∂By

∂t
= Bz

∂Uy

∂z
+ η

∂2By

∂z2
(5)
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∂Bz

∂t
= 0 (6)

with the magnetic field expressed in terms of the Alfvén speed (VA ≡ B0), under the
normalization used.

The chosen geometry and the condition of incompressibility enforce that the partial
derivatives of the velocity component Uz and the magnetic field component Bz with
respect to z are zero (∂zUz = 0 and ∂zBz = 0). Without loss of generality, Uz = 0 is
initially assumed. The total pressure within the system is also found to remain uniform.
From Equation (6), we infer that the transverse component of the magnetic field, Bz,
likewise, remains constant over time allowing us to treat Bz as a fixed parameter.
Moreover, one can notice that Equations (1) and (4) are separable from Equations (2)
and (5).

The influence of the transverse field Bz is manifested in Equations (1), (2), (4),
and (5). Specifically, the term Bz∂zBx in Equation (1) induces a constant acceleration,
resulting in a velocity shear in the X-direction, initially proportional to Bzsech

2(z),
provided Bz is nonzero. In Equation (4), the shear in Ux alters the profile of the
current sheet through the term Bz∂zUx. Furthermore, a non-zero Bz impacts the
Equations (2) and (5), where the non-uniform guide field By generates another shear
in the plane of the current sheet in the Y-direction via Bz∂zBy, affecting the guide
field By profile due to Bz∂zUy. The remaining non-ideal terms represent viscosity (ν)
in Equations (1) and (2), and resistivity (η) in Equations (4) and (5).

By neglecting the effects of viscosity and resistivity, it becomes possible to analyt-
ically solve the system. Taking the time derivative of Equation (4) and substituting
the time derivative of Ux from Equation (1) leads us to a second-order differential
equation for Bx:

∂2Bx

∂t2
= B2

z

∂2Bx

∂z2
(7)

Given the initial Harris current sheet, described by a hyperbolic tangent, the
solution to this second-order differential equation is:

Bx(t, z) =
B0

2

[
tanh

(
z +Bzt

a

)
+ tanh

(
z −Bzt

a

)]
(8)

It is easily verified that, at t = 0, this profile corresponds to B0 tanh
(
z
a

)
. By

introducing a relative measure of the transverse field with respect to the upstream
field, i.e. ξ ≡ Bz/B0, we have Bz = (Bz/B0)B0 = ξVA.

The solution describes a current sheet of the thickness a that develops a neutral
layer of vanishing Bx expanding around the midplane with the half-width increasing
with time as w = (ξ/a)VAt. The solution can be rewritten as:

Bx(t, z) =
B0

2

[
tanh

(
z + ξVAt

a

)
+ tanh

(
z − ξVAt

a

)]
(9)

From the magnetic field profile, we can deduce the solution for the shear Ux by
integrating the z-derivative of Bx over time, as described by Equation 1. The resultant
expression for the Ux shear is:
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Ux(t, z) =
V0
2

[
tanh

(
z + ξVAt

a

)
− tanh

(
z − ξVAt

a

)]
(10)

It can be easily verified that at t = 0, Ux = 0. Upon examining this profile, it
becomes apparent that its maximum occurs at z = 0, which reveals the temporal
increase in the amplitude of the Ux shear as follows:

Ux(t, z = 0) = V0 tanh

(
ξ

a
VAt

)
(11)

This equation implies that the amplitude of the Ux shear initially increases from
zero, growing linearly with time at a rate proportional to ξVA/a, and eventually
saturates at the Alfvén speed beyond the saturation time tsat ≈ a/ξVA.

Applying similar reasoning, we can determine the analytical solutions for By

and Uy, assuming negligible viscosity and resistivity. Taking the time derivative of
Equation 5 and inserting Equation 2 leads to a second-order differential equation:

∂2By

∂t2
= B2

z

∂2By

∂z2
(12)

For the Harris current sheet model under consideration, the solution to this
equation is:

By(t, z) =
B0

2

[
sech

(
z + ξVAt

a

)
+ sech

(
z − ξVAt

a

)]
+Bg, (13)

where Bg is the uniform guide field component. Similarly, the solution for the Uy shear
profile:

Uy(t, z) =
B0

2

[
sech

(
z + ξVAt

a

)
− sech

(
z − ξVAt

a

)]
. (14)

The solutions for By and Uy hold under the condition that the guide field Bg

vanishes. Initially, the amplitude of this shear increases linearly from zero, reaching a
saturation value of VA/2. However, as the uniform component of the guide field Bg

increases, the amplitude of Uy correspondingly decreases. Importantly, the evolution
of Bx and Ux does not depend on the y-components of these fields, highlighting a
distinct separation in the dynamics of the field components.

Numerical solutions of the current sheet evolution
in the presence of a transverse field

To validate our analytical predictions, we conducted numerical simulations of
Equations (1)-(6) using the Dedalus framework (Dedalus Project: https://dedalus-
project.org/) on a setup consisting of two adjacent Harris current sheets within a
periodic box. The initial current sheet thickness a was set to unity. Our exploration
included various values of the transverse magnetic field, ξ.

Figure 1 illustrates the growth in the shear amplitudes of Ux and Uy within the
current sheet setup across different ξ values. Initially, both shear amplitudes demon-
strate linear growth, progressing to a saturation level, in agreement with the analytical
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Fig. 1: The growth of the shear amplitude Ux (solid) and Uy (dashed) as functions
of the transverse field strength, ξ. The initial current sheet thickness was assumed to
unity, a = 1 and the null uniform guide field, Bg = 0. The horizontal gray lines indicate
the saturation levels of VA (solid) and VA/2 (dashed) for the shear velocities. The
saturation time, τsat, scales proportionally with the strength of ξVA (tsat ∼ a/ξVA).
These simulations were conducted with S = 106 and Pr = 0 (η = 10−6 and ν = 0,
respectively).

predictions. The time it takes to reach this saturation point scales with the magnitude
of ξ. Notably, the Ux shear reaches saturation at the Alfvén velocity (VA), whereas
the Uy shear saturates at half the Alfvén velocity (VA/2).

Beyond the saturation phase, the current sheet undergoes expansion, indicated by
the widening of the Bx profile depicted in Figure 2. This expansion affects not only
the Ux shear region but also leads to the broadening of the profiles for Uy and By,
again, in agreement with the analytical predictions.

The analysis of the one-dimensional Harris current sheet in the presence of a
transverse magnetic field reveals significant dynamics that are governed by the incom-
pressible MHD equations. The study highlights how a constant transverse field Bz

influences the evolution of magnetic and velocity field profiles, inducing shears in both
the x- and y-directions. These shears evolve due to the coupling between velocity
and magnetic field components, as mediated by Bz. The analytical solutions derived
demonstrate that the magnetic field profile Bx and velocity profile Ux both split and
propagate away from the midplane, leading to the development of dynamic shears that
increase linearly in amplitude and eventually saturate. This saturation occurs at the
Alfvén speed for Ux and at half the Alfvén speed for Uy, dependent on the magni-
tude of Bz. Furthermore, the evolution exhibits a distinct separation in the dynamics
of the x- and y-components, underscoring the robust separability in their behaviors.
Numerical simulations confirm these analytical findings, illustrating the key role of the
transverse field in shaping the temporal and spatial dynamics of the Harris current
sheet.
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Fig. 2: The field profiles at selected times (t = 0, 100, 200, and 300) for a fixed
transversal field, Bz = 0.01. The panels from top to bottom depict Ux, Uy, Bx, and
By, respectively.

Tearing Instability Analysis in the Quasi-Steady
Expanding Current Sheet Limit

In the previous section, we established that the presence of a transverse field disrupts
the equilibrium of the 1D Harris current sheet, altering its profile and creating an
expanding neutral layer. If Bz is sufficiently small, this expansion may be slow enough
to allow the development of tearing instability, which can be studied in a quasi-steady
current sheet scenario.

In this section, we will perform a stability analysis using the current sheet profile
with a neutral layer as defined by the solution found in the previous section. We per-
form such analysis using different profiles, that correspond to different evolutionary
stages of the current sheet. Apart from the Bx profile, we will also consider a corre-
sponding solution for Ux. We parameterize the strength of the transverse field by ξ
as defined earlier, and the half-width of the expanding neutral layer by w = ξVAt.
Assuming, without loss of generality, that B0 = 1 and VA = 1.

The linearized equations are derived from the incompressible MHD equations in
a traditional manner, assuming a 2D setup in X and Z coordinates. To eliminate the
dependency on pressure, we take a curl of the momentum equation. We assume that
the perturbations take the form q̂(t, x, z) = q(z) exp (−γt+ ikx). Furthermore, we
substitute the x components of velocity and magnetic field Fourier amplitudes using
the incompressibility condition, i.e., bx = i∂zbz/k and ux = i∂zuz/k. This procedure
leads to the following linearized independent equations:

γ
(
u′′z − k2uz

)
= ik

[
F
(
b′′z − k2bz

)
− F ′′bz −G

(
u′′z − k2uz

)
+G′′uz

]
+ξ

(
b′′′z − k2b′z

)
+ PrS

−1
(
u′′′′z − 2k2u′′z + k4uz

)
,

(15)

γbz = ik (Fuz −Gbz)+ξu
′
z + S−1

(
b′′z − k2bz

)
, (16)

where ξ ≡ Bt/B0 is the relative strength of the transverse field, and ′, ′′, ′′′,
and ′′′′ are the first, second, third, and fourth-order derivatives with respect to
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Fig. 3: The dispersion relations for the case of Lundquist number S = 104 are shown
for several values of w = 0, 0.5, 1, 1.5, and 2 (colors), and strengths of the transverse
field ξ = 0, 10−4, 10−3, and 10−2 (solid, dashed, dotted, and dashdot line styles, respec-
tively). The upper and lower plots correspond to cases with Prandtl numbers 0 and
1, respectively. For this analysis we assumed here L = a = 1.

z, respectively. The functions F (z) = 1
2

[
tanh

(
z+w
a

)
+ tanh

(
z−w
a

)]
and G(z) =

1
2

[
tanh

(
z+w
a

)
− tanh

(
z−w
a

)]
represent the analytical solutions for Bx and Ux, respec-

tively, at time t, corresponding to w = ξVAt. Here, L represents the assumed unit
of length. Furthermore, we define two Alfvén time scales: τA = a/VA, related to the
thickness of the current sheet, and tA = L/VA, related to the characteristic scale L.
For most cases presented here, we assume L = a = 1, resulting in τA and tA being
equal. The linearized equations (15)-(16) resemble those derived in previous studies on
tearing instability [see, e.g., 20, 24]. The distinction arises from the presence of terms
related to the shear, represented by G and G′′, and terms containing the constant
transverse field, ξ.

We perform the stability analysis of the Equations (15)-(16) using the Psecas
framework [25], which offers a robust tool for studying the stability of various physi-
cal systems by facilitating the solution of linear stability problems. It is particularly
adapted for handling differential equations that describe perturbations in continuous
media, such as those found in fluid dynamics and plasma physics. The framework
employs spectral methods, which are advantageous for their accuracy and efficiency
in resolving complex waveforms in stability analyses. By decomposing the problem
space into basis functions, Psecas efficiently transforms the differential equations into
a matrix eigenvalue problem. This allows for the computation of growth rates and
eigenmodes, essential for understanding the stability characteristics of the system. The
flexibility of Psecas in selecting appropriate basis functions and boundary conditions
makes it a versatile tool in the theoretical investigation of instabilities, enhancing both
the depth and scope of analysis possible within computational research environments.

Figure 3 shows dispersion relations for the equilibrium profiles of Bx and Ux,
described by functions F and G, respectively, with several values of w. The solid
lines correspond to ξ = 0 and are derived by neglecting the terms related to ξ in
Equations (15)-(16). The system’s response is solely due to the equilibrium profiles.
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Two regimes of tearing instability can be recognized: the constant-ψ regime at large
α, where the growth rate γ decreases with the wavenumber, and the non-constant-ψ
regime at small α, with γ increasing with α. The existence of these two regimes results
in a maximum growth rate γmax and corresponding wavenumber αmax. The figure
shows that the dispersion relations decrease in terms of the growth rate γ and shift
their maximum to longer wavelengths with increasing w. For w = 2, the dispersion
relation is characterized by growth rates smaller than 5 × 10−4 with wavelengths
α = ka smaller than 0.2. Including the viscous terms in Equation (15) results in a
further decrease of the growth rates γ (compare upper and lower panels in Fig. 3).

The dispersion relations calculated by taking into account the terms with ξ in
Equations (15)-(16) are plotted with dashed, dotted, and dash-dotted lines for ξ =
10−4, 10−3, and 10−2, respectively. Small values of ξ ≪ 10−2, result in a gradual
decrease of the growth rates at all wavelengths. For w = 0 and ξ = 10−2, we observe
a significant increase of the growth rate, especially in the region of γmax. However, as
the system evolves and the neutral layer width (w) increases, the growth rate in the
non-constant-ψ regime drops, and most of the wavelengths in the constant-ψ regime
are stabilized.

These results demonstrate the significant impact of the ξ-related terms on tearing
mode instability, enhancing the growth rates for the classical profile of the Harris
current sheet (w = 0) with a sufficiently large transverse field ξ = 10−2, but quickly
stabilizing most of the tearing instability modes once the equilibrium profiles expand
due to the action of a non-zero ξ. It is important to note that the value of w = 1
corresponds to the half-width of the neutral layer being equal to the initial Harris
current sheet thickness a = 1. Therefore, once the action of the transverse field expands
the neutral layer to more than twice the thickness of the initial current sheet, the
expected result is the stabilization of essentially all tearing instability modes.

Now, focusing on the fastest growing mode, Figure 4 displays the maximum growth
rate, γmax, and the corresponding wavenumber, αmax, in the left and right panels,
respectively, dependence on the half-width of the neutral layer w for cases with varying
magnitudes of the transverse field, ξ. It is noticeable that for very weak transverse
fields, ξ < 10−4, the maximum growth rate decays nearly exponentially with increasing
w. Once the transverse field strengthens, i.e., ξ ≥ 10−4, the maximum growth rate
drops faster than the exponential rate, eventually stabilizing completely at a certain
thickness of the neutral layer.

In the inviscid case shown in the upper panel, the estimated stable half-widths are
approximately w ∼ 2.6, ∼ 1.7, and ∼ 1.2 for ξ = 10−4, 10−3, and 10−2, respectively. A
similar behavior is observed in the viscous case (lower panel), with stable half-widths
slightly larger. We anticipate that the action of the viscous terms in Equation (15)
decreases the gradients in the uz profiles, which somewhat diminishes the impact of
the ξ-related term in Equation (16).

Finally, we study the dependence on the initial current sheet thickness, a. In the
classical tearing mode analysis the maximum growth rate increases with decreasing
current sheet thickness as γmax ∝ (a/L)−3/2. As shown in the left panels of Figure 5,
this behaviour is recovered only for w = 0. Once the neutral layer increases, the
behaviour of γmax with a changes drastically. We show that in the presence of the

10



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
w

10 5

10 4

10 3

10 2

γ
m

a
x
τ A

Maximum growth rate (S= 104, Pr = 0)

ξ= 0

ξ= 10−5

ξ= 10−4

ξ= 10−3

ξ= 10−2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
w

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

k
m

ax
a

Maximum wavenumber (S= 104, Pr = 0)

ξ= 0

ξ= 10−5

ξ= 10−4

ξ= 10−3

ξ= 10−2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
w

10 5

10 4

10 3

10 2

γ
m

a
x
τ A

Maximum growth rate (S= 104, Pr = 1)

ξ= 0

ξ= 10−5

ξ= 10−4

ξ= 10−3

ξ= 10−2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
w

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

k
m

ax
a

Maximum wavenumber (S= 104, Pr = 1)

ξ= 0

ξ= 10−5

ξ= 10−4

ξ= 10−3

ξ= 10−2

Fig. 4: The dependence of maximum growth rate γmax (left) and corresponding
wavenumber αmax (right) on the neutral layer width w for different strength of trans-
verse field ξ (0, 10−5, 10−4, 10−3, and 10−2). The case of S = 104 for Pr = 0 and
Pr = 1 are shown in the upper and lower panels, respectively. For this analysis we
assumed here L = a = 1.

expanding neutral layer this relation does not hold anymore, mostly due to the chang-
ing profile of the equilibrium field, and not the action of ξ related terms. The saturation
time tsat ∝ a, therefore, for smaller a the tearing is stabilized faster. Indeed, as seen
in Figure 5, already for 10 times thinner current sheet the growth rate decays with
decreasing a for w > 0.1. At the same time, the corresponding wavenumber kmax tends
to larger scales, as shown in the right panels of Figure 5.

Direct Numerical Simulations of Tearing Mode in
an Expanding Current Sheet

The stability analysis of the previous section, performed for fixed equilibrium pro-
files, indicates that the tearing mode instability should be suppressed for a sufficiently
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Fig. 5: The dependence of maximum growth rate γmax (left) and corresponding
wavenumber αmax (right) on the initial current sheet thickness a for different neutral
layer widths w (0, 0.1, 0.2, and 0.3) and Lundquist numbers (104, 105, and 106). The
case of Pr = 0 and Pr = 1 are shown in the upper and lower panels, respectively.

thick neutral layer. To verify if this conclusion holds for time-varying profiles of mag-
netic and velocity shears, we conducted direct numerical simulations of the initial
Harris current sheet, represented by a hyperbolic tangent profile of the x-component
of the magnetic field and varying transverse field strength. The numerical solution of
the incompressible MHD equations in 2D was obtained using the Dedalus framework
(Dedalus Project: https://dedalus-project.org/).

Figure 6 shows examples of simulations performed with a Lundquist number S =
104 and a magnetic Prandtl number Prm = 0, for the initial Harris current sheet of
thickness a = 1 and different strengths of the initial transverse field, Bz = 0 (subfigures
a and c) and Bz = 10−3 (subfigures b and d). The amplitude of the initial magnetic
field perturbation was set to 10−4. The velocity components and vorticity are shown
in the left panels of each subfigure, while the magnetic field components and current
density are shown in the right panels. The growth rate of the most unstable tearing
mode for this case is γmax ≈ 0.006, resulting in an instability time scale of ttearing ≈
165τa, where τa is the current sheet crossing time. Two moments are depicted: t =
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(a) (b)

(c) (d)

Fig. 6: Field profiles in simulations of the initial Harris current sheet equilibrium with
two values of transverse field, ξ = 0 (subfigures a and c) and ξ = 10−3 (subfigures b and
d) at two different moments, t = 1000 (subfigures a and b) and t = 1500 (subfigures
c and d). Each subfigure contains colormaps of vx, vz, ωy (left panels from top to
bottom, respectively), and Bx, Bz, jy (right panels from top to bottom, respectively).
The simulations were conducted with a Lundquist number S = 104, magnetic Prandtl
number Prm = 0, and initial current sheet thickness a = 1.

1000 (subfigures a and b) and t = 1500 (subfigures c and d). At these times, the
tearing mode should grow by factors of approximately 420 and 8,600, respectively. For
comparison, the estimated stabilization time tsat due to the presence of the transverse
field for the case of ξ = 10−3 is around 1000, several times longer than the instability
growth time.

In subfigures a and c of Figure 6, one can recognize the typical evolution of tearing
mode instability in the case of a null transverse field: thickening of the current sheet
in the center, accompanied by outflows from the center in both directions, resulting
in the creation of two plasmoids on both sides. In the case of a non-zero but weak
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transverse field, shown in subfigures b and d, we observe the formation of an expanding
neutral layer with a strong velocity shear, as predicted by the analytical solution of
the 1D Harris current sheet evolution. Additionally, we see a much weaker current
density with no characteristic plasmoid formation, separated by a thin current sheet.

In conclusion, the 2D numerical simulations of the initial Harris current sheet with
a non-zero transverse field confirm the prediction from the linear stability analysis
regarding the stabilization effect of the transverse field on tearing mode instability. The
presence of a transverse field indeed suppresses the tearing mode instability, leading
to the formation of a stable, expanding neutral layer as opposed to the plasmoid-
dominated structure seen in the absence of a transverse field.

Conclusions

In this work, the impact of a transverse magnetic field on the evolution of a Harris cur-
rent sheet for magnetic reconnection is thoroughly investigated, including its impact
on the tearing/plasmoid instability. The showed that the presence of the transverse
field Bz modifies the initial shear profile of the magnetic field, as demonstrated through
both analytical and numerical methods. The derived analytical solutions for the mag-
netic and velocity fields show that Bz induces, and enhances through time, a velocity
shear in the x-direction, which eventually saturates at the Alfvén speed. This trans-
verse field also affects the y-direction shear, although it saturates at half the Alfvén
speed. In a time evolution analysis, we showed that this increased shear induces the
broadening of the current sheet, resulting in the formation of a neutral layer whose
width increases over time. This effect becomes more important for stronger transverse
fields, Numerical simulations validate these analytical predictions, indicating a clear
alignment between theoretical and computational results.

Major consequences of the time-evolution described above is seen in the tearing/-
plasmoid instability. The stability analysis of the current sheet, taking into account the
transverse field, indicates significant modifications on the modes of tearing instability.
The analysis reveals that for small values of Bz the growth rates of tearing instabilities
are reduced, leading to stabilization as the neutral layer expands. For strong trans-
verse fields the growth rates initially increase but are quickly reduced as the neutral
layer broadens. This demonstrates that, despite what has been previously thought,
the combined effect of a strong transverse field in tearing, and the time evolution of
the current sheet, actually stabilizes the tearing modes by expanding the neutral layer
beyond a critical thickness.

Direct numerical simulations of the tearing instability with varying transverse field
strengths further support the theoretical predictions, demonstrating the stabilizing
effect of the transverse field. The direct numerical simulations show that, in the absence
of a transverse field, the tearing mode instability leads to the formation of plasmoids
and a thickened current sheet. However, with a non-zero transverse field, an expand-
ing neutral layer with strong velocity shear develops, and the characteristic plasmoid
formation is suppressed. The stabilization effect is clearly observed, as the transverse
field prevents the typical tearing mode evolution and results in a stable, expanding
neutral layer. These results validate the theoretical stability analysis presented in this
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work, confirming that a sufficiently strong transverse field can effectively quench the
tearing mode instability.

Our study emphasizes the role of the transverse magnetic field in shaping the
evolution and stability of current sheets, highlighting the intricate interplay between
magnetic field configurations and plasma instabilities. These findings may change
considerable the understanding of magnetic reconnection and turbulence in plasma
physics, with potential implications for space and astrophysical phenomena, given
that one of the fast mechanisms of magnetic reconnection has been shown here to be
quickly quenched in real systems.

Stabilization effects of transverse fields has been already pointed by Somov and
Verneta [4, 23, 26]. In their work, Somov and Verneta demonstrated a significant sta-
bilizing influence of a transverse magnetic field within the magnetohydrodynamics
(MHD) framework, highlighting how a small transverse field can suppress the tear-
ing mode instability in current layers. They also explained the discrepancies found
in earlier studies, which had yielded negative results regarding the stabilizing effects.
The current study advances this understanding by providing detailed analytical solu-
tions for the evolution of magnetic and velocity shears in the presence of a transverse
field and confirming these theoretical predictions through direct numerical simulations
using the Dedalus framework. The simulations show that the transverse field indeed
leads to the formation of an expanding neutral layer and suppresses the characteristic
plasmoid formation associated with tearing modes, thus corroborating the theoretical
insights provided by Somov and Verneta and extending them to time-varying pro-
files in a dynamically evolving current sheet. This alignment between analytical and
numerical results offers a robust confirmation of the stabilizing effects of transverse
fields on tearing mode instabilities in reconnecting current layers.
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